Release of Neuronal HMGB1 by Ethanol through Decreased HDAC Activity Activates Brain Neuroimmune Signaling
نویسندگان
چکیده
Neuroimmune gene induction is involved in many brain pathologies including addiction. Although increased expression of proinflammatory cytokines has been found in ethanol-treated mouse brain and rat brain slice cultures as well as in post-mortem human alcoholic brain, the mechanisms remain elusive. High-mobility group box 1 (HMGB1) protein is a nuclear protein that has endogenous cytokine-like activity. We previously found increased HMGB1 in post-mortem alcoholic human brain as well as in ethanol treated mice and rat brain slice cultures. The present study investigated the mechanisms for ethanol-induced release of HMGB1 and neuroimmune activation in a model of rat hippocampal-entorhinal cortex (HEC) brain slice cultures. Ethanol exposure triggered dose-dependent HMGB1 release, predominantly from neuronal cells. Inhibitors of histone deacetylases (HDACs) promoted nucleocytoplasmic mobilization of HDAC1/4 and HMGB1 resulting in increased total HMGB1 and acetylated HMGB1 release. Similarly, ethanol treatment was found to induce the translocation of HDAC1/4 and HMGB1 proteins from nuclear to cytosolic fractions. Furthermore, ethanol treatment reduced HDAC1/4 mRNA and increased acetylated HMGB1 release into the media. These results suggest decreased HDAC activity may be critical in regulating acetylated HMGB1 release from neurons in response to ethanol. Ethanol and HMGB1 treatment increased mRNA expression of proinflammatory cytokines TNFα and IL-1β as well as toll-like receptor 4 (TLR4). Targeting HMGB1 or microglial TLR4 by using siRNAs to HMGB1 and TLR4, HMGB1 neutralizing antibody, HMGB1 inhibitor glycyrrhizin and TLR4 antagonist as well as inhibitor of microglial activation all blocked ethanol-induced expression of proinflammatory cytokines TNFα and IL-1β. These results support the hypothesis that ethanol alters HDACs that regulate HMGB1 release and that danger signal HMGB1 as endogenous ligand for TLR4 mediates ethanol-induced brain neuroimmune signaling through activation of microglial TLR4. These findings provide new therapeutic targets for brain neuroimmune activation and alcoholism.
منابع مشابه
Neuroimmune Function and the Consequences of Alcohol Exposure
Induction of neuroimmune genes by binge drinking increases neuronal excitability and oxidative stress, contributing to the neurobiology of alcohol dependence and causing neurodegeneration. Ethanol exposure activates signaling pathways featuring high-mobility group box 1 and Toll-like receptor 4 (TLR4), resulting in induction of the transcription factor nuclear factor kappa-light-chain-enhancer ...
متن کاملGlutamate/NMDA excitotoxicity and HMGB1/TLR4 neuroimmune toxicity converge as components of neurodegeneration
Neurodegeneration in brain is linked to both excitotoxicity and neuroimmune gene induction, although the mechanisms are poorly understood. High-mobility group box 1 (HMGB1) is a cytokine like molecule released in brain by glutamate that has been found to enhance neuronal excitability through Toll-like receptor 4 (TLR4). To explore the role of HMGB1 in glutamate/NMDA excitotoxicity or neuroimmun...
متن کاملHDAC4/5-HMGB1 signalling mediated by NADPH oxidase activity contributes to cerebral ischaemia/reperfusion injury
Histone deacetylases (HDACs)-mediated epigenetic mechanisms play critical roles in the homeostasis of histone acetylation and gene transcription. HDAC inhibitors have displayed neuroprotective properties in animal models for various neurological diseases including Alzheimer's disease and ischaemic stroke. However, some studies have also reported that HDAC enzymes exert protective effects in sev...
متن کاملThe Bimodal Nature of Neurovascular Coupling
Neurons, by virtue of their complex and continuously changing signaling roles in brain, must be able to regulate access to energy in order to maintain their ability to communicate meaningful frequency-encoded information. This is accomplished by release of neurotransmitters to astrocytes that in turn signal the vascular system to increase cerebral blood flow (CBF). This process has been termed ...
متن کاملMitochondrial Translocation of High Mobility Group Box 1 Facilitates LIM Kinase 2-Mediated Programmed Necrotic Neuronal Death
High mobility group box 1 (HMGB1) acts a signaling molecule regulating a wide range of inflammatory responses in extracellular space. HMGB1 also stabilizes nucleosomal structure and facilitates gene transcription. Under pathophysiological conditions, nuclear HMGB1 is immediately transported to the cytoplasm through chromosome region maintenance 1 (CRM1). Recently, we have reported that up-regul...
متن کامل